CSE 332: Data Structures and Parallelism

Section 09: Concurrency, Graphs, & P/NP

0. User Profile

You are designing a new social-networking site to take over the world. To handle all the
volume you expect, you want to support multiple threads with a fine-grained locking
strategy in which each user's profile is protected with a different lock. At the core of your
system is this simple class definition:

1 class UserProfile {

2 static int id_counter;

3 int id; // unique for each account

4 int[] friends = new int[9999]; // horrible style
5 int numFriends;

6 Image[] embarrassingPhotos = new Image[9999];

7
8

UserProfile() { // constructor for new profiles

9 id = id_counter++;

10 numFriends = 9;

11 }

12

13 synchronized void makeFriends(UserProfile newFriend) {

14 synchronized(newFriend) {

15 if(numFriends == friends.length

16 || newFriend.numFriends == newFriend.friends.length)
17 throw new TooManyFriendsException();

18 friends[numFriends++] = newFriend.id;

19 newFriend.friends[newFriend.numFriends++] = id;
20 }

21 }

22

23 synchronized void removeFriend(UserProfile frenemy) {

24

25 }

26 }

a) The constructor has a concurrency error. What is it and how would you fix it? A
short English answer is enough - no code or details required.

b) The makeFriends method has a concurrency error. What is it and how would
you fix it? A short English answer is enough no code or details required.

1. Bubble Tea

The BubbleTea class manages a bubble tea order assembled by multiple workers.
Multiple threads could be accessing the same BubbleTea object. Assume the Stack

objects are thread-safe, have enough space, and operations on them will not throw an
exception.

1 public class BubbleTea {

2 private Stack<String> drink = new Stack<String>();
3 private Stack<String> toppings = new Stack<String>();
4 private final int maxDrinkAmount = 8;

5

6 // Checks if drink has capacity

7 public boolean hasCapacity() {

8 return drink.size() < maxDrinkAmount;

9 }

10

11 // Adds liquid to drink

12 public void addLiquid(String liquid) {

13 if (hasCapacity()) {

14 if (liquid.equals("Milk")) {

15 while (hasCapacity()) {

16 drink.push("Milk");

17 }

18 } else {

19 drink.push(liquid);

20 }

21 }

22 }

23

24 // Adds newTop to list of toppings to add to drink
25 public void addTopping(String newTop) {

26 if (newTop.equals("Boba") || newTop.equals("Tapioca")) {
27 toppings.push("Bubbles");

28 } else {

29 toppings.push(newTop);

30 }

31 }

a) Does the BubbleTea class above have (circle all that apply):

a race condition potential for a data race none of these
deadlock

If there are any problems, give an example of when those problems could occur.
Be specific!

b) Suppose we made the addTopping method synchronized, and changed nothing
else in the code. Does this modified BubbleTea class above have (circle all that

apply):
a race condition potential for a data race none of these
deadlock
If there are any FIXED problems, describe why they are FIXED. If there are any

NEW problems, give an example of when those problems could occur. Be
specific!

2. Phone Monitor

The PhoneMonitor class tries to help manage how much you use your cell phone
each day. Multiple threads can access the same PhoneMonitor object. Remember
that synchronized gives you reentrancy.

1 public class PhoneMonitor {

2 private int numMinutes = 0;

3 private int numAccesses = 0;

4 private int maxMinutes = 200;

5 private int maxAccesses = 10;

6 private boolean phoneOn = true;

7 private Object accessesLock = new Object();
8 private Object minutesLock = new Object();
9

10 public void accessPhone(int minutes) {

11 if (phoneOn) {

12 synchronized (accesseslLock) {

13 synchronized (minutesLock) {
14 numAccesses++;

15 numMinutes += minutes;

16 checkLimits();

17 }

18 }

19 }

20 }

21

22 private void checkLimits() {

23 synchronized (minutesLock) {

24 synchronized (accesseslLock) {

25 if (numAccesses >= maxAccesses
26 || numMinutes >= maxMinutes) {
27 phoneOn = false;

28 }

29 }

30 }

31 }

32 }

a) Does the PhoneMonitor class as shown above have (circle all that apply):

a race condition potential for a data race none of these
deadlock

If there are any problems, give an example of when those problems could occur.
Be specific!

b) Suppose we made the checkLimits method public, and changed nothing else
in the code. Does this modified PhoneMonitor class have (circle all that apply):

a race condition potential for a data race none of these
deadlock

If there are any FIXED problems, describe why they are FIXED. If there are any
NEW problems, give an example of when those problems could occur. Be
specific!

3. It Rhymes with Flopological Sort

Consider the following graph:

a) Does this graph have a topological sort? Explain why or why not. If you answered
that it does not, remove the MINIMUM number of edges from the graph
necessary for there to be a topological sort and carefully mark the edge(s) you
are removing. Otherwise, just move on to the next part.

For the remaining parts, work with this (potentially) new version of the graph.

b) Find a topological sort of the graph. Do not bother showing intermediary work.

Snow Day

After 4 snow days last year, UW has decided to improve its snow response plan.
Instead of doing "late start" days, they want an "extended passing period" plan. The
goal is to clear enough sidewalks that everyone can get from every classroom to every
other \textbf{eventually} but not necessarily very quickly.

Unfortunately, UW has access to only one snowplow. Your goal is to determine which
sidewalks to plow and whether it can be done in time for the first 8:30 AM lectures.

You have a map of campus, with each sidewalk labeled with the time it will take to plow
to clear it.

a) What will the vertices of your graph be?

b) What will the edges be? You should at least say whether your edges are directed
or not and whether they're weighted or not.

c) What algorithm will you run on your graph?

d) How will you interpret the output of your algorithm? (i.e. which sidewalks to plow
“in the real world" instead of just in graph terms).

e) Briefly (2-4 sentences) explain why your model works. You should at least
address why you ran the algorithm you did (e.g., why are you looking for a
shortest path/MST/topological ordering/etc.) and how you are ensuring your
algorithm will be able to produce an "extended passing period" plowing plan.

